

Office of Naval Research

Advanced Integrated Radar Electronics and Photonics – AIREP

Ms. Mun-Won C. Fenton ONR-35

Fentonm@onr.navy.mil (703)588-0617

1

- Objective
- Background
- System Architecture
- Sub-systems
- Demonstration

Objectives

- Develop Advanced Sub-systems and capabilities for Mountaintop Testbed for airborne platforms
 - E-2C, UAV, Potential MMA
- Areas of Consideration
 - 1. Lightweight Low Cost UHF Transmitter
 - 2. Transmit and Receive Switch
 - 3. Lightweight Low Cost UHF Digital Exciters
 - 4. Lightweight Low Cost UHF Digital Receivers
 - 5. Advanced UHF electronically scanned antenna
 - 6. Lightweight Low Cost CEC Airborne Active Antenna
 - 7. Circular Space Time Adaptive Processing
 - 8. Advanced and novel ideas for UHF radar system monitoring
 - 9. Mountaintop concept demonstration testbed radar and communications support equipment
 - 10. Simulated Synthetic Radar Environhment

Radar and Avionics Sub-Systems

Sub-Systems	Proposed
Antenna	UESA (UHF/IFF/SATCOM/ES) Multi-Channel UHF Antenna, T/R Swt/LNA IF/RP (Stationary Dome)
Transmitter	Multi-Channel Tube Uniform Power Modules, Power Supplies (Sized for 24 Channels), Structure
Exciter	Multi-Channel Digital Exciters Digital Phase and Amplitude Control
Receivers	Multi-Channel Digital Receivers Digital Beamformer Hardware Equalization, Pulse Compression, Pre Doppler Processor
Processors/ STAP	Multi-Channel Post-Doppler STAP Single STAP, Digital Beamformer, Signal, Detection, Data, Environmental Processor
CEC Active Antenna	C-band Active Antenna Exceeds CEC Antenna Gain Requirements Smaller, Lighter, More Affordable
Simulated Synthetic Env	Simulated Synthetic Radar Environment on Makaha Ridge & MHPCC
Advanced System Monitoring	Advanced and novel ideas for UHF radar system monitoring

AIREP Program Overview

PHASE 1 FY99 – FY06

PHASE 2 FY03 – FY06

PHASE 3A/B FY 04 – FY07

Increasing Threat Sophistication

Mountaintop Test Bed (MTB)
Makaha Ridge, PMRF

Sub-System Development (SSD)

Non-Real Time Demo

Transitioning to E-2C SIL

(MRF-03)

Real Time Demo

(MRF-05)

Optimized Radar Architecture Trade-off Study

Demo New technologies & Insert Subsystem Prototypes:
• Optimized Antenna

- Miniaturized Digital Receivers
- High Power Tube Transmitter
- Next Generation Exciter
- · Circular STAP Algorithm
- Advanced CEC Antenna

3A: Flight Demo (FD)
3B: E-2C SIL

E-2 Insertion

Validate System
Concept

Flight qualified prototype subsystems demonstrated:

- Prove flight worthiness
- Demo in flight conditions
- CONOPS demonstration

Each phase reduces risk for development of advanced technology for potential E-2C AH insertion

Surveillance Radar Antenna Evolution... NAVWALR

TRAC-A, E-2C Group II

Mechanical Scan

RMP ADS-18S, Hawkeye TBD (Hybrid)

Mechanical-Electronic Scan

UESA-54, Hawkeye TBD

Electronic Scan

Support fleet operations in broad ocean area:

- Single fixed beam in rotating dome
- Limited coverage
- 1970's RF & structures technology

Provides limited ocean & land capability:

- **▶** 120 degrees rotating & ESA coverage
- Search & track in lockdown
- 1980's technology

Enhanced ocean & land operations capability:

- > 360 degree Beam on **Demand capability**
- > Fixed Radome with continuous search & track
- > FY '00 Navy ATD
- > 1990/2000's Technology

Key Milestones:

- Program/Kickoff Award: Oct 2001
- SRR: Dec 2001
- PDR : April 2002
- CDR : August 2002

- Delivery to MR: June 2003
- Demo Non Real time: December 2003
- Demo Real Time: May/June 2004
- IPRs/TIMs to be held bi-annually

UESA RTB System Non-Real Time Demo August 03, MRF 03

54 Channel Uniform SiC Transmitter (No Power Combiners nor Circulator/ Receive Protect)

54 Channel Digital Exciter/ Receiver

27 Channel STAP Processor

UESA RTB Trailer

E-2C AH Right Side

E-2C AH Left Side

Max Envelope Definition – Right Side

Max Envelope Definition – Right Side

VIEW LOOKING OUTBOARD - RH SIDE

Max Envelope Definition – Right Side

VIEW LOOKING AFT – RH SIDE VIEW LOOKING FWD – RH SIDE

Max Envelope Definition – Left Side

ISOMETRIC VIEW LH SIDE

Optimized AIREP Architecture

DOME

Current UESA RTB Block Diagram

Exciter Subsystem

Features

- Latest DDS technology
 - Analog Devices AD9854
- Modular
 - All hardware on VME boards
 - except 60 MHz A/D Clock
- High Performance
 - 32-bit frequency resolution
 - 14-bit phase resolution
 - 12-bit amplitude resolution
- Maintainable
 - Easy access cabling
 - All I/O on chassis rear panel

- Cost Effective
 - COTS
 - Built on Existing Designs
- Transmit beam steering and forming
 - Supports both LUT and ALG methods
- 56 independently controlled DDS channels
 - 54 RF transmit channels
 - 1 receiver calibration channel
 - 1 spare channel
 - 54 receiver inputs for future growth (i.e. simulated targets)
- Modulation: BPSK, PSK, FSK, Linear and non-linear FM
- 10 MHz GPS Reference (4x)

Exciter Block Diagram

Exciter Configuration

Direct Digital Synthesis (DDS) Exciter

Current SiC Transmitter Subsystem

PAMs

Multivolt Power Supplies

Power Supply Cabinet

HVPS

• Inputs from Exciter – front

Outputs to Duplexer – rear

HVPS

• Input side – receives signal from Exciter

Output side – sends signal to PMS

Features

- Input
 - 54 channels from Transmitter
- Output
 - 54 Channels to T/R switch subsystem
 - 54 Channels to Dummy Load subsystem
 - Transmit disable signal to Transmitter subsystem via RSE

Transmit Path

Receive Path

UESA Antenna Evolution

NAVAIR ¹/₄ Scale array (1999)

Raytheon Full Scale Array (1996-99)

Features

- GPS
- Exciter
- 1st Stage LO/CLK/BIT dist
- RSE 1 (master)
- RSE 2 (slave)
- EMI-shielded 19" rack
- All interfaces at top of rack
 - Doghouse provides easy connector access
- 54 channels I/Q data

UHF Receiver Block Diagram

Integrated Analog Receiver Front-End

Features

UHF Digital Receiver (UDR) Baseline

- Two sided, analog/digital design
- Digitizes incoming receive data
- Outputs data to MCR via VME backplane and Data I/O board (fiber outputs)

UDR

Why UESA STAP is More Computational (Reason 2)

- STAP relies upon the redundancy of a linear array moving in space
- A circular array is less redundant
- AIREP needs low-sidelobe Doppler filtering before STAP to filter out some of the unwanted

Airborne CEC Active Antenna

Built and measured Passive Antenna

- **Aperture for existing data distribution** system
- 72-element circular array (electronic scan)
- For use with 24-channel or single channel Microwave Power Module based **Transmitter**
- 34" Diameter, 2.5" thick
- Weight: 24 lbs (w/out radome) Gain: 23 dBi (5° x 23° nominal) (measured)

Active Element Transmit/Receive Module

Measured patterns (super element)

Proposed AIREP Program

Phase 1: AIREP Mountaintop Test Bed (MTB)(FY02 – FY 05)

- Non-Real Time Demo (MRF 03) (Funded)
- Space Time Adaptive Processing (STAP)
 - STAP Algorithm Dev
 - STAP Analysis at MHPCC
- Real Time Demonstration
 - Radar System Software
 - Optimized Sub-System Integration
 - Signal Processor Integration
 - Real Time STAP Implementation
 - Radar Demonstration (MRF 05)
- IFF/SATCOM/ES Integration

Phase 2: AIREP Sub-System Development (SSD) (FY03 – FY 05)

- Optimized Antenna
- Transmitter
- Receiver
- Exciter
- Active CEC Antenna
- Photonics Technology

Sub-Systems	AIREP System	MT Demo	Flight Demo
Antenna	UESA (UHF/IFF/SATCOM/ES)	6	7
Transmitter	Multi Channel Uniform	6	7
Exciter	Multi Channel Digital Exciters	6	7
Receivers	Multi Channel Digital Receivers	6	7
Processors/ STAP	Multi Channel Post-Doppler STAP	6	7
CEC Antenna	Active Antenna	6	7
Photonics	Digital/Fiber Optics Receive I/Q	6	7
Optimized UESA Radar	Real Time Demonstration of an Optimized System	6	7

Technology Readiness Level (TRL)

- 1. Basic principles Observed & Reported
- 2. Technology Concept and/or Application Formulated
- 3. Analytical & Experimental Critical functions and/or characteristic proof of Concept
- 4. Component and/or breadboard validation in laboratory environment
- 5. Component and/or breadboard validation in relevant environment
- 6. System/subsystem model or prototype demonstration in a relevant environment
- 7. System prototype demonstration in an operational environment
- 8. Actual system completed and "flight qualified" through test and demonstration
- Q Actual gystem "flight proyen" through successful mission energtions

AIREP: Schedule/Milestones

	Schedule																						
Phases and Tasks	FY02				FY03			FY04			FY05				FY06				FY07				
Phase 1 AIREP MTB																							
Non-Real Time Demo (MRF 03)																							Γ
STAP Development							•					•											T
Real Time Demonstration																							T
Optimized System Integration																							T
Signal Processor Integration																							Ī
Real Time STAP Implementation																							Γ
Radar Demonstration (MRF 05)																							Ī
IFF/SAT COM/ES Integration																							Ī
Phase 2: AIREP SSD																							
Antenna																							Γ
Transmitter																							Γ
Receiver																							Γ
Exciter																							Γ
Active CEC Antenna																							Γ
Photonics Technology																							
Phase 3A: AIREP FD																							
Concept Development																							Γ
Sub-system Flight Certification																							
System Integration																							
Flight Demonstration																							
Data Anlaysis																							
Phase 3B: E-2C SIL																							
Concept Development																							
Mission Computer Integration																							
Integrated Photonics																							
CNI Integration (Link/CEC.IFF/SAT COM)																							
ES System Integration																							
Q70 Console Integration																							
IRST Integration																							

PMA-231 AH SD&D Program Milestone NAVWALR

Demonstration

Three Phases

- Integrated Test Plan
 - Phase I: Subsystem I&T at Contractor Facility
 - Government witnessed
 - Phase II: Makaha Ridge I&T Contractor
 - Government witnessed
- Final Test Plan -- Makaha Ridge Phase III
 - Real-Time Demo
 - Demonstrate system control, beam forming, data collection
 - Record data
 - with / without jammers, with / without controlled air targets
 - Real-Time Demo
 - Final RTB inspection
 - Initial setup & calibration demonstrations & tests
 - Initial operating demonstrations & tests
 - Data Collection, Real-Time Processing
 - Controlled aircraft demonstrations & tests
 - Post-Mission demonstrations & analyses